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Abstract—

Vehicular applications are becoming increasingly complex and
resource hungry (e.g. autonomous driving). Today, they run
entirely on the vehicle, which is a costly solution that also imposes
undesirable resource constraints. This paper uses Simultaneous
Localization and Mapping (SLAM) as an example application
to explore how these applications can instead leverage edge
clouds, utilizing their inexpensive and elastic resource pool. This
is challenging as these applications are often latency-sensitive
and mission-critical. They also process high-bandwidth sensor
data streams and maintain large, complex data structures. As
a result, traditional offloading techniques generate too much
traffic, incurring high delay. To overcome these challenges, we
designed CloudSLAM. It partitions SLAM between the vehicle
and the edge. To manage the complex, replicated SLAM state,
we propose a new consistency model, Qutput-driven Consistency,
that allows us to maintain a level of consistency that is sufficient
for accurate SLAM output while minimizing network traffic.
This paper motivates and describes our offloading design and
discusses the results of an extensive performance evaluation of a
CloudSLAM prototype based on ORB-SLAM.

Index Terms—simultaneous localization and mapping, con-
nected vehicles, edge computing

I. INTRODUCTION

Modern vehicles are increasingly relying on IT technology
for tasks such as enhancing driver experience, driver assis-
tance, and even safety-critical applications. These applications
typically run entirely on the vehicle, requiring a substantial
in-vehicle IT infrastructure. In-vehicle execution has the ad-
vantage that (1) applications are simple to develop and (2)
always work with predictable response time without needing
wireless connectivity. However, this approach is not sustain-
able for several reasons. First, the on-board IT infrastructure
increases the complexity and cost of the vehicle. Second,
while mobile devices (e.g. smartphones) are updated every few
years, vehicles have a typical lifetime of 10-15 years. This
can result in outdated computing infrastructures that cannot
support evolving application requirements.

Cloud offloading, which has been studied extensively for
mobile devices [1], [2], [3], is an obvious alternative. While
this is possible for non-mission-critical infotainment appli-
cations [4], [5], more critical applications like autonomous
driving use a multitude of sensors (e.g. video cameras, LIDAR,
radar) that generate large volumes of data. However, cellular
bandwidth is a limited and expensive resource. In addition,
these applications are often latency sensitive, typically requir-
ing response times in tens or a few hundreds of milliseconds.
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Due to these issues, traditional offloading techniques are not
applicable since the large sensor inputs would result in very
high network loads and excessive delays.

In this paper, we propose an architecture for offloading
sensor-rich, real-time vehicular applications, using Simulta-
neous Localization and Mapping (SLAM), specifically ORB-
SLAM, as an example application. SLAM is a widely used
technique in autonomous driving systems. Inspired by previous
research [3], [4], [5], we investigate an offloading approach in
which we partition the automotive application between the
vehicle and the edge. In our approach, called CloudSLAM, we
execute latency-sensitive SLAM tasks on the vehicle to ensure
their timely completion, while less latency-critical tasks are
delegated to an edge cloud. In this design, offloaded tasks only
use pre-processed sensor data, thus reducing communication
costs and latency. Using the edge also assists with latency by
providing for low, predictable latency [6], [7], [8].

While function partitioning is an attractive and viable solu-
tion, it raises the question of how the distributed tasks share
information. Applications such as SLAM maintain a large state
map that is used and updated by all the tasks throughout the
trip. This state map must be replicated across the vehicle and
the edge, but using traditional methods to ensure consistency
is impractical because of the high frequency and complexity of
the updates. Previous works have focused on partial replication
[9] and differential updates [10]. However, to address this
challenge, we note that the only output of ORB-SLAM is
the pose (location and orientation) of the vehicle. The ORB-
SLAM state is used to compute the pose but the state itself is
not an output. Based on this observation, we propose output-
driven consistency, a new, relaxed consistency model to man-
age consistency for this type of application. Output consistency
keeps the vehicle and edge state sufficiently consistent for the
vehicle to calculate accurate output poses. Our implementation
of output-driven consistency minimizes bandwidth use by
adapting the rate of state updates while assuring the quality
of SLAM’s pose output.

This paper makes the following contributions:

e We define an offloading architecture for sensor-driven,

stateful vehicular applications based on partitioning;

« We introduce the concept of output-driven consistency, a
relaxed state consistency model in which the degree of
consistency is driven by the desired quality of the output
of the application;

¢ We describe CloudSLAM, a distributed implementation
of ORB-SLAM that applies output-driven consistency,
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Fig. 1. System Overview of ORB-SLAM

focusing on the mechanisms that adapt the bandwidth
utilization based on the desired output quality;

o We present an extensive evaluation that shows the ef-
fectiveness of the output-driven consistency adaptation
mechanisms and their impact on the accuracy.

The rest of the paper is organized as follows. Section II
gives an overview of ORB-SLAM. We present a high-level
CloudSLAM design in Section III and elaborate on how
we manage the replicated SLAM state using output-driven
consistency in Section IV. In Section V we discuss how
we balance network use and SLAM accuracy. Cloud-vehicle
coordination is described in Section VI and Section VII
presents our evaluation results. Finally, we discuss related
work and conclude in Sections VIII and IX, respectively.

II. ORB-SLAM

Simultaneous Localization And Mapping (SLAM) is a
technique for estimating the pose of a vehicle (location and
orientation). It is a critical component of autonomous driving
systems [11]. In SLAM, precise localization is achieved using
a feature map of the traversed environment that is constructed
and updated throughout the trip using inputs from sensors
such as a stereo camera or LIDAR. In this paper we use
ORB-SLAM [12], specifically ORB-SLAM2 [13], as an
example of a sensor-driven, stateful vehicular application. It is
a state-of-the-art implementation of visual SLAM that has high
accuracy and good performance. In this section, we provide
the background needed on ORB-SLAM to understand our
offloading design.

ORB-SLAM consists of three main modules, namely Track-
ing, Local Mapping, and Loop Closing, as shown in Figure 1.
These modules run as separate threads on a single processor.

1) Tracking: The Tracking module uses a stream of stereo
frames to incrementally localize the camera on a frame-by-
frame basis. This is accomplished by extracting unique fea-
tures from the images and establishing map point correspon-
dences between frames. Map points are points in space that are
believed to have a fixed position. By comparing the locations
of these map points in consecutive frames using the map data
structure described below, it is possible to reason about the
motion of the camera and to incrementally estimate its pose.

The Tracking module also determines when to generate new
keyframes. Keyframes are frames that contain enough new
information to be worth saving and they are further processed
by the Local Mapping module.

2) Local Mapping: The Local Mapping module is respon-
sible for creating and maintaining a model of the environment.
Local Mapping takes as input the keyframes that are forwarded
by the Tracking module and builds a set of data structures that
are used to calculate an accurate pose output. First, it stores
the keyframes and their associated camera pose. Second, it
keeps track of map points which are features tracked across
multiple frames. The map point information includes a features
descriptor, its 3D position, and the mean moving direction
across the frames. Finally, the Local Mapping module also
builds and maintains a set of graphs that link keyframes
based on the map points they contain. These data structures
(keyframes, map points, and graphs) constitute what we call
a map.

As new keyframes arrive, the Local Mapping module also
performs a small-scale optimization step referred to as a
local bundle adjustment or local BA. Local BA uses the
information provided by each new keyframe to improve the
position estimates of previous keyframes in the spatial locality
of the new keyframe. Consequently, this improves the map in
general which will improve the accuracy of future pose outputs
as well.

3) Loop Closing: The Loop Closing module determines
whether the camera has revisited a previous location. For
example, imagine an employee who commutes to an office
building for work. At the end of the day she commutes
back home, thereby “completing a loop” by revisiting the
place where she started. This information can be used to
improve the quality of the map using a technique called global
bundle adjustment or global BA. Global BA is based on the
observation that the start and end points of the loop must be in
the same location. However, SLAM’s pose output for the start
and end points may in fact be different since Tracking and
Local Mapping alone may result in significant accumulated
drift, an intrinsic problem of visual odometry. The Loop
Closing module can reduce the effect of drift by forcing the
start and endpoints to be co-located and by correcting the pose
of all keyframes and map points in the map accordingly.

4) Using previous trip data: Note that global BA is per-
formed after the loop is completed, so it cannot go back in
time and improve the accuracy of the pose output during the
trip itself, what we refer to as the live trajectory. However, the
map that was optimized using global BA can be used by ORB-
SLAM to improve the accuracy of ORB-SLAM in future trips.
The idea is simple: when a driver starts a new trip, instead of
starting with an empty map, the map generated during earlier
trips can be used as the initial map for the new trip. Since it has
benefited from global BA, this map that contains very accurate
information on map points that can improve the accuracy of
the pose output. When using a map with previous trip data,
Local Mapping continues to apply local BA to further improve
the pose output. Figure 2 shows an extreme example for a very
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Fig. 2. ORB-SLAM output with and without access to previous trip data

challenging loop to illustrate the importance of using a map
with previous trip data. We see that without the benefit of loop
closure or previous trip data, the ORB-SLAM output suffers
from significant drift. Note that while loop closing at the end
of the loop will significantly improve the accuracy, the result
is unacceptable during the trip itself.

III. CLOUDSLAM OVERVIEW

While it is possible to run ORB-SLAM entirely on the
vehicle, this has several disadvantages. First, embedding high-
performance compute infrastructure in a vehicle is complex
and costly. Second, while one can limit cost by simplifying
the SLAM code, sensor-driven applications such as SLAM and
object tracking typically involve trade-offs between compute
resources and result quality. Resource constraints on the vehi-
cle can affect the quality of the output, and loss of accuracy
will get worse as applications become more sophisticated.
Finally, a map with previous trip data will generally become
large enough to make storage on a vehicle impractical. For
example, using the KITTI dataset [14] as a reference, we
estimate that it would take on average 200 MB of memory per
mile of road to store an ORB-SLAM-compatible map. With
6000 miles of roads, it would take 1.2 TB of memory to store
a map of New York City. This map is critical to achieving
good accuracy and will need to be constantly updated.

In this section, we describe the high-level design of Cloud-
SLAM, a modified version of ORB-SLAM that supports real-
time offloading of SLAM processing to the inexpensive, elastic
resource pool available in the cloud. Since SLAM output
is time-critical, we focus on the use of an edge cloud. We
identified the following goals for CloudSLAM. The primary
goal is reducing the CPU and memory requirements on the
vehicle. Second, CloudSLAM’s accuracy should be similar to
that of ORB-SLAM running on the vehicle, both in terms of
accuracy and timeliness of pose updates. Finally, we want to
minimize the use of the network since cellular bandwidth is
limited and expensive.

A. Offloading versus Partitioning

The simplest way to leverage the cloud is to simply run
ORB-SLAM on an edge server. The vehicle can send the
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Fig. 3. ORB-SLAM execution times for Tracking, Local Mapping, and Loop
Closing for the KITTI-05 trace. This box plot shows the five-number summary
of statistics for each of the modules (circles are outliers).

(a) ORB-SLAM'’s requirements per module

Module Latency Constraint Frequency
Tracking Real-time every frame
Local Mapping Real-time every keyframe
Loop Closure No exact deadline once per loop

(b) ORB-SLAM’s average performance on KITTI-05

Module # of Frames | Avg. Time (s)
Tracking 2761 0.058
Local Mapping 725 0.168
Loop Closure 3 0.644
TABLE I
LATENCY CONSTRAINTS AND EXECUTION TIME OF ORB-SLAM
MODULES

stereo video stream to the edge, which computes the pose
using a map with previous trip data to achieve high accuracy,
and returns the pose to the car. The problem is that this
approach requires significant cellular bandwidth. Not only can
this design be expensive (in monetary cost), but the cellular
bandwidth is limited and variable, which can lead to long
transfer times for video frames, delaying the pose outputs and
affecting accuracy.

In order to better understand the computational requirements
of ORB-SLAM, we measured the execution times of the three
ORB-SLAM modules on one of the traces of the KITTI visual
odometry dataset [14]. We conducted this test on a workstation
computer running an Intel 17-6700K 4GHz processor with 16
GB of RAM. Figure 3 shows the execution times for the
modules, while Table I provides more information on the
properties of each module. The results are shown per processed
frame and averaged across five runs. Each run on average
processes 2761 frames, 725 keyframes, and 3 keyframes in
the Tracking, Local Mapping, and Loop Closing modules,
respectively. Note that while ORB-SLAM is multi-threaded,
execution is sequential on a single core.

B. Module and Map Placement

The above results suggest that CloudSLAM should use
partitioning, with the Tracking and Local Mapping modules
executing on the vehicle, and the Loop Closing module exe-
cuting in the edge. The Tracking and Local Mapping modules



have relatively low execution times and, while there are some
outliers, their execution times are fairly predictable (Figure 3).
In addition, as shown in Table I, both must execute in real-
time since they generate the pose output that is used by
applications running on the vehicle. Finally, they process either
all the frames (Tracking) or keyframes (Local Mapping) and
sending all of frames to the edge consumes a large amount of
bandwidth and delays the pose output.

In contrast, the Loop Closing module (when fully executed)
has a longer execution time that is less predictable since it
depends strongly on the size of the map, i.e. the length of
the loop at the time it is triggered. This makes it a good
candidate for offloading. Loop Closing is also less time critical
than Tracking and Local Mapping, so we can afford the extra
latency associated with remote execution. However, as we will
show in our evaluation, it is critical that we offload to an edge
cloud as opposed to an arbitrary server.

Finally, due to its size, the map with previous trip data is
only stored in the edge. We refer to this map as the global map
and refer to the map on the vehicle as the local map. The local
map only includes information relevant to the current trip.

This high-level design helps address many of our design
goals. However, this design involves three significant chal-
lenges:

« State management: Since all modules read and write to
the complex map data structure, how do we manage the
consistency of the copies of the map on the vehicle and
in the edge?

o Limiting bandwidth use: How do we further limit
network bandwidth use since this design still requires
keyframes to be sent to the edge?

o Maintaining accuracy: The difficulty of generating an
accurate pose depends heavily on the mobility and phys-
ical environment. How do we maintain accuracy given
that both can change significantly during a trip?

In the next two sections we describe how we address these
challenges using a set of mechanisms that result in the
CloudSLAM design shown in Figure 4.

IV. MANAGING STATE

ORB-SLAM was designed to run on a single processor and
all modules expect to operate on a single copy of the map
data structure. As described previously, the local and global
maps in CloudSLAM are very different since the global map
is initialized with previous trip data while the local map starts
from scratch each trip.

A. Consistency Requirements

From our initial experimentation with ORB-SLAM, we
realized that maintaining strict state consistency between the
local and global maps is not necessary. What we really care
about, for any SLAM system, is the pose output. While the
accuracy of the pose output depends on the accuracy of the
map, small differences in map state will have a limited impact
on the pose output.
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Fig. 4. CloudSLAM vehicle-edge partitioning

This is acceptable for two reasons. First, the execution of
ORB-SLAM is not repeatable due to its multi-threaded design
[13], so two executions of ORB-SLAM using the same video
input will generate a slightly different trajectory each time due
to the non-deterministic scheduling of the modules. Secondly,
the construction of the map is based on sensor data, which
itself can be noisy. Given this, it is not realistic to expect
that the CloudSLAM output will be exactly identical to the
output of a corresponding ORB-SLAM execution. However,
they can be kept similar and we observe that occasional
updates are sufficient to accomplish this. This suggests that
in CloudSLAM, differences in the local and global maps are
acceptable and strong consistency is not a requirement. What
matters is that the local and global maps must both be accurate
enough to generate an accurate pose compared with ORB-
SLAM. SLAM output always has some error and the amount
of error that is acceptable depends on the application that uses
the output.

B. Local and Global Map Consistency

Based on the above observations, we implement a relaxed
consistency model that focuses on the accuracy of the pose
output instead of the consistency of the state. We refer to this
as output-driven consistency and it is discussed in more detail
below. Supporting output-driven consistency while maintain-
ing pose accuracy with limited network bandwidth requires
several new mechanisms, resulting in the design in Figure 4.

First, instead of using the original Loop Closing module
which performs an expensive global optimization over the
entire map, the edge server processes the keyframes using the
more efficient Remote Mapping module that we developed,
reducing the response time. It uses the same loop closing



function, but only applies the optimization to a smaller number
of frames that are relevant to the keyframe being processed.
Since the global map was initially created by using loop
closing on loops from previous trips, we found that Remote
Mapping can still generate an accurate pose output using a
more constrained set of matched keyframes. In addition, while
other works send a new local map [9] or map updates [10] to
the vehicle, the edge server in CloudSLAM only sends a pose
update to the vehicle, reducing communication overhead. On
the vehicle, the updated pose is used by the Tracking module to
calculate future poses, but also by the Local Mapping module
to back-propagate the correction and improve the accuracy
of the local map by adjusting the map within a small time
window. This is the part of the map that is most critical for
future pose calculations.

Second, since CloudSLAM is bandwidth limited, we cannot
send all keyframes to the edge during a trip, so CloudSLAM
only sends a subset of keyframes. The challenge is that the
difficulty of calculating an accurate pose depends on the
physical environment and speed. For example, visual SLAM
often has trouble with camera rotation in turns [15], increasing
the risk of drifts. To deal with this challenge, we adapt the rate
at which keyframes are sent to the edge based on an estimate
of the pose error relative to ORB-SLAM (Section V).

Third, since CloudSLAM only sends a subset of the
keyframes to the edge, the Remote Mapping module cannot
fully enhance the global map with the data from loops that
are part of the current trip using global BA since it is missing
many keyframes. However, loop closing can be done at the
end of the trip, when the car has an opportunity to upload
more keyframes cheaply. In CloudSLAM, we incorporate the
missing keyframes of the current trip in the cloud map at
the end of the trip. The cloud map is archival and it is used
to initialize the global map before a trip, so enhancements
will be automatically picked up. Also, by delaying the global
bundle adjustment until after the trip, we can use high-speed
wireless (e.g. WiFi) to transfer keyframes to the edge, so there
is no need to use valuable cellular bandwidth during the trip
(Section VI). Note that with this design, the global and local
map are ephemeral state, so limiting updates to the part of the
map that is relevant to future pose outputs is acceptable.

Next, we define output-driven consistency more precisely
and describe its implementation in CloudSLAM. We then
describe how we adapt the keyframe rate in Section V and
how all the mechanisms work together in Section VI.

C. Output-driven Consistency

Based on the discussion above, the only consistency re-
quirement for the cloud and vehicle maps in CloudSLAM is
that the pose estimates generated by CloudSLAM are similar
in quality to those generated by ORB-SLAM. We refer to
this type of consistency as output-driven consistency. To use
the terminology defined by Aguilera et al. [16], output-driven
consistency is a form of operation consistency as opposed to
state consistency.

Let us more precisely define output-driven consistency using
the following simple formulation. Let z; and x5 represent
the state of two nodes in a distributed system, node 1 and
node 2, respectively. Let f(-) represent the processing done
on such states by some application. For a strict form of state
consistency, when there are no outstanding update operations,
we get state equality (Equation 1) which yields output equality
(Equation 2).

T2 =1 (D

fw2) = f(a1) 2

In contrast, for output-driven consistency we want the states
to be sufficiently similar (Equation 3) so that the difference
between the outputs of the function f(-) applied to the states
1 and z9 is small (Equation 4).

Ty = T1 (3)

|f (1) = f(z2)] <€ “4)

The goal of CloudSLAM is to generate a pose output
that is very similar to that of ORB-SLAM. Of course, we
cannot run ORB-SLAM during the trip. However, since the
Remote Mapping module running in the edge has access to
the global map with previous trip data, we expect that the
pose it generates will be very similar to that of ORB-SLAM,
assuming it receives enough keyframes. Based on this, we can
express the consistency model implemented by CloudSLAM
as follows. Consider that the states m; and mg correspond
to the local and global maps, respectively, and the functions
fu(+) and fe(-) correspond to the components of CloudSLAM
running on the vehicle and edge server, respectively. We want
to keep the part of the two maps that impact the pose output
qualitatively similar (Equation 5), so that the error of the
pose output generated by the vehicle f,(mp) is similar to
the (estimated) ORB-SLAM pose f.(mg).

mr ~mg @)

|fo(mr) — fe(ma)| < e (6)

This model can be implemented by having the vehicle monitor
the difference between its local pose estimate and the adjust-
ments returned by the edge. This difference can then be used
as a metric by which to adjust the rate at which keyframes are
sent to the edge, as described in Section V.

We believe that a consistency model that focuses on the
output accuracy, rather than state, can be useful in other sensor-
driven applications. For example, Google Maps has released
an augmented reality (AR) feature [17] that provides directions
while users navigate through an environment using their
phone’s camera. This application applies similar computer
vision techniques to that of SLAM and it is also latency-
sensitive as well. We believe that enabling the application to
dynamically leverage both a local and global map as we do
in CloudSLAM can improve its performance.



V. MINIMIZING NETWORK USE WHILE MAINTAINING
ACCURACY

In this section we describe how we balance the trade-
off between minimizing bandwidth use and maintaining the
accuracy of the pose output. This is done by limiting the rate
at which we send keyframes to the edge and by adjusting this
rate based on the pose adjustments returned to the vehicle by
the Remote Mapping module (Section IV-B).

A. Minimizing Network Bandwidth

We first focus on how we implemented fixed-rate strategies
in CloudSLAM. We consider two strategies.

The simplest fixed-rate strategy is a periodic strategy, which
sends keyframes periodically to the edge server. However,
ORB-SLAM’s selection process for keyframes is data-driven
and unpredictable so we cannot send keyframes with an exact
fixed period. We instead approximate periodic transmissions
by enforcing a maximum keyframe transmission rate, as
opposed to a fixed one, by specifying a minimum time window
between consecutive keyframes that are sent to the edge. For
example, if the desired period is one frame/second, then after
a keyframe is sent to the edge, the next keyframe that is sent
is the first keyframe that is generated by the vehicle after one
second has elapsed.

We also evaluate a second fixed-rate strategy, called the
distance strategy, in which we pick keyframes based on
a distance threshold, rather than a time threshold. This is
based on the observation that when a vehicle is not moving,
or moving slowly, it is not necessary to upload as many
keyframes to the edge since the content of the video frames
changes more slowly compared with a fast moving vehicle.
In other words, distance can be a better predictor of how
quickly frames change than time. This effect is captured by
using a distance metric, i.e. after a keyframe transmission
the next keyframe that is sent is the first keyframe generated
after the vehicle has tracked itself to have moved at least x
meters. We compare both of these strategies in our evaluation
in Section VIL

B. Maintaining Accuracy through Adaptation

Sending keyframes to the edge using a fixed strategy is easy
to implement once we have the right rate. Picking a rate that
is too high will waste network bandwidth while a rate that is
too low will result in a loss of accuracy of the pose output and
cause drift. In practice, the ideal number of keyframes needed
to obtain an accurate output depends strongly on the physical
environment. In an environment with many distinct features
that can be used by the Tracking module to incrementally
generate a new pose, fewer keyframes are needed. The rate at
which features change across frames and the type of motion
are also factors. For example, pure camera rotation is a difficult
challenge for visual SLAM [15].

For the above reasons, CloudSLAM adapts the rate at which
keyframes are sent to the edge, but a metric is needed to
control the adaptation. We considered two metrics. The first
metric is the number of features that match between successive
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Fig. 5. Adapting the rate of keyframes sent to the edge

frames. When the number of matches starts to drop, we
would expect that the pose estimates will start to diverge
significantly from the actual trajectory. The second metric is
the magnitude of the pose corrections that the edge returns
based on keyframes that were sent up. Since the Remote
Mapping module uses a global map based on previous trip
data, we expect that its pose estimate will be very similar to
that of ORB-SLAM. As a result, the difference between the
poses generated by the edge and by the vehicle are a direct
estimate of the error in the pose estimates generated on the
vehicle.

In order to evaluate how effective the metrics are in predict-
ing the error introduced by the vehicle’s local map tracking,
we calculated the error in the pose output of ORB-SLAM
without previous trip data (i.e. using just the Tracking and
Local Mapping modules, similar to the vehicle) relative to
ORB-SLAM’s optimized output (i.e. with Loop Closing). For
both metrics we found a good correlation. For the feature-
based metric, we found that the number of feature matches
between consecutive frames is generally lower as the error
increases. For the pose adjustment metric, we found that the
pose adjustment returned by CloudSLAM is higher for road
segments where ORB-SLAM output has higher error. We
conclude that either metric could be used but decided to use the
pose adjustment metric for two reasons. First, the number of
matches between consecutive frames depends strongly on the
video trace, making it hard to define an appropriate threshold
for adaptation. Second, the pose adjustment metric is a direct
estimate of the error in the output of CloudSLAM. This is
likely to be more robust than an internal metric (such as
feature matches) and it also has the benefit that the adjustment
threshold can be intuitively picked by users of CloudSLAM
based on their error tolerance, e.g. 2 meters.

Figure 5 shows how the adaptive strategy is implemented.
The Local Mapping module compares the pose returned by
Remote Mapping with the vehicle’s pose estimate and adjusts
the keyframe rate accordingly. This design can be used to adapt
the rate for both the periodic and distance fixed-rate strategies.
As a proof of concept we implement the adaptive strategy on
top of the distance metric. We use a decrease multiplier of 0.9
and an increase multiplier of 1.01 for the distance threshold.
The motivation is that if the pose correction is high, we want
to increase the rate more aggressively to avoid a long-term
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drift. When the correction is low, the results are likely accurate
so we slowly explore lower keyframe rates that save net-
work bandwidth. We use this simple multiplicative-increase,
multiplicative-decrease strategy to evaluate the effectiveness of
adaptation to maintain accuracy, but more research is needed
to develop more robust strategies that can, for example, deal
with a sudden change in the environment, e.g. when moving
from an urban road with many distinct buildings into a park
with a uniformly green leafy environment.

VI. CLOUD-VEHICLE COORDINATION

Figure 6 shows how the various mechanisms of Cloud-
SLAM work together during a trip.

At the start of a trip, the vehicle sends its first frame to
the edge. The Remote Mapping module will try to match it
with a keyframe in the global map. When a match is found, the
module provides the vehicle with its pose based on the frame’s
placement in the global map, which was initialized using an
archival cloud map. This aligns the coordinate systems of
the local and global maps, which simplifies the exchange
of keyframes and updates during the trip. The vehicle then
proceeds with Tracking and Local Mapping as usual. The
vehicle continues to send keyframes to the edge as the strategy
in use specifies.

During the trip, the vehicle sends keyframes to the edge
at a rate determined by the adaptation strategy, discussed in
Section V-B, to achieve output-driven consistency. For each
keyframe, Remote Mapping does loop closing on a limited set
of frames similar to the new keyframe. This updates the cloud
map with new information that the keyframe might contain and
provides an optimized pose estimate for the keyframe. This
optimized pose is sent to the vehicle, which uses it to improve
both the future poses computed by the Tracking module and
also the local map updated by Local Mapping.

After the end of the trip, we assume that the vehicle can
use an inexpensive high-bandwidth wireless link (e.g. WiFi)
to upload all keyframes of the trip to the cloud. CloudSLAM
processes these frames using full loop closure to help grow
and keep the archival cloud map up-to-date so that it remains
useful for future trips, even as the environment changes. For
this procedure, CloudSLAM applies the more time consum-
ing global BA to fully benefit from the information in the
keyframes.

VII. EVALUATION

We present a trace-driven evaluation of the end-to-end per-
formance of CloudSLAM using a prototype implementation.
We also explore the accuracy-bandwidth trade-off of output-
driven consistency and compare the keyframe transmission
strategies that we developed.
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(a) Rectangular Trace (b) Circular Trace
Fig. 7. The Two Traces

A. Experiment Setup

1) Hardware Setup: Our experimental setup for Cloud-
SLAM evaluation consists of two networked computers repre-
senting a vehicle and an edge server. We use a Dell PowerEdge
R720 with a 2.8 GHz Intel Xeon E5-2680 v2 to represent the
vehicle and a Dell Precision Tower 3620 with a 4 GHz Intel
Core 17-6700K to represent the edge server. From our experi-
mentation with the unmodified ORB-SLAM, we observed that
the software performance is CPU-bound. We believe assigning
a faster CPU to the edge server is representative of a realistic
environment, where we expect that edge servers will have
relatively more resources than vehicles.

2) Approach: As described earlier, our focus is on using
ORB-SLAM as an example application to develop an architec-
ture for offloading stateful, latency-sensitive applications using
output-driven consistency, so we are not trying to develop
a better visual SLAM system. As a result, we use the live
trajectory output of ORB-SLAM as the baseline for our
experiments and evaluate how well CloudSLAM replicates the
ORB-SLAM output.

3) Traces: Up until now we’ve been using the KITTI vision
benchmark suite [14] to inform our development decisions.
KITTI is widely used for evaluating SLAM but unfortunately,
none of the KITTI traces include substantial loops so they are
not suitable for evaluating CloudSLAM.

For that reason, we collected two traces consisting of long
loops. As shown in Figure 7, the first trace is rectangular
in shape and was captured on an urban campus, while the
second trace is more circular and was captured in a suburban
community. Images for the traces were recorded by a camera
with 1280x720 resolution, operating at 60 fps (frames per
second). We downsampled the traces to 15 fps so they can
be processed in real-time by ORB-SLAM and CloudSLAM.
The stereo camera has a 12 cm baseline.

The rectangular and circular traces are important for two
reasons. Firstly, the traces consist of two laps along the
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Traces # Frames | D20 Duration (s) Top root mean square error (RMSE) of the pose output as our
Length (m) Speed (mph) . . q : p ; p . )
Rectangle | 1922 508 128 15 metric, which is commonly used for comparing trajectories.
Circular | 2984 1450 200 24 A trajectory consists of a finite set of points representing the
TABLE T . . .
poses determined for each frame of the video trace. First, we

DETAILS ABOUT SECOND LOOPS OF CUSTOM DATASET (BOTH ARE 15 FPS
AT 1280X720 RESOLUTION)

same path. We use the first lap as “previous trip” data for
both ORB-SLAM and CloudSLAM. The previous trip data is
optimized using loop closure and global bundle adjustment.
The second lap is used for evaluation purposes. Details on
the second lap are shown in Table II. Secondly, the traces are
challenging enough that ORB-SLAM experiences significant
drift when no previous trip data is available, as can be seen in
Figure 2. In other words, the Tracking and Local Mapping
modules alone are not sufficient to get good performance.
This allows us to evaluate the impact that offloading has
on CloudSLAM’s performance relative to ORB-SLAM. The
circular trace is especially difficult because long continuous
rotation is fundamentally challenging for SLAM [15].

4) Comparing Trajectories: To measure the error of our
trajectory output against the ORB-SLAM baseline, we use the

“Base map and data from OpenStreetMap and OpenStreetMap Foundation

use Euclidean distance to determine the pose error between
the corresponding points of the ORB-SLAM and CloudSLAM
trajectories. Then, we combine the error across all of the
points using RMSE. Figure 8 and Figure 9 show examples
of CloudSLAM output overlaid on the ORB-SLAM baseline
(dashed line). It can be observed that the RMSE increases
as the CloudSLAM trajectory deviates more from the ORB-

SLAM one.
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Fig. 10. Map of the circular trace*



It is challenging to provide a proper reference for the
circular trace due to the difficulty of the trace. The reason is
that the ORB-SLAM trajectory generated by global BA after
the first lap has a high error relative to ground truth. We do not
have ground truth in the form of GPS coordinates for the trace,
but Figure 10 shows a map of the roads used for the circular
trace (Verona Cir. and Fulton Pl.). We can see that the shape
of the reference trajectory for the circular trace (dashed line in
Figure 9) is quite different from the actual road in the map. The
reason is that global BA distributed the error uniformly across
the loop. In fact, with the period parameter of 1 second, the
output of CloudSLAM after the second lap (blue trajectory in
Figure 9) matches the map much better, so CloudSLAM (and
ORB-SLAM) improve the accuracy of the trajectory relative
to the actual road shape during the second lap. Due to the
poor quality of the reference frame, the RMSE results for the
circular trace suffer from a large offset. A cloud map that has
benefited from multiple previous trip data sets would not suffer
from this problem regarding how ORB-SLAM handles large
amounts of rotation [15].
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Fig. 11. RMSE and data transfer plots for each strategy and trace, averaged
over five runs.

B. RMSE versus Bandwidth Tradeoff

Figures 11(a) and 11(b) show the results of using Cloud-
SLAM with the fixed-rate Periodic Strategy on the Rectangle
and Circular traces, respectively. The figures show both the
RMSE (blue circle) and the Average Bandwidth (red diamond)
as a function of the keyframe period. The Average Bandwidth
is calculated based on all data sent in both directions between
the vehicle and the edge during the trip. This value is directly
correlated with the number of keyframes transmitted. Each
keyframe is about 500 KB on average while pose updates
from the edge are about 90 bytes. As a baseline, vehicle-only
operation for the Rectangle trace results in an RMSE of 25.3
m, whereas sending all keyframes to the edge results in an
RMSE of 0.899 m at 35.3 Mbps.

The results show a trade-off between accuracy and band-
width use of CloudSLAM. In Figure 11(a), when the keyframe
period is small, the error is low but the network utilization is
high. On the other hand, when the period is higher, around 20
seconds, the network utilization drops below 5 MB as only
around 9 keyframes are transmitted, corresponding to about
0.310 Mbps on average for the duration of the trip. This trend
is more pronounced in the Circular trace, Figure 11(b), which
is a result of the Circular trace being much more challenging
than the Rectangle trace.

Figures 11(c) and 11(d) show the same results for the fixed-
rate Distance Strategy for the two traces. We observe that
similar to the periodic scheme, the distance scheme enables
a trade-off between accuracy and bandwidth, but there is a
significant difference. For low data transfer rates, the RMSE
is noticeably lower for the Distance Strategy than for the
Periodic Strategy, suggesting that the Distance Strategy is
more effective at deciding when to send keyframes to the edge
server.
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Fig. 12. Timeline of keyframe transmissions for the Rectangle trace

C. Comparing Periodic and Distance Strategies

During our initial experimentation with the KITTI dataset,
we observed that drift is more a function of distance than it is
of time. We believe that this observation explains the perfor-
mance difference between the Periodic and Distance Strate-
gies. The Periodic Strategy is based on sending keyframes at
fixed time intervals so it does not consider the motion of the
vehicle. In contrast, the Distance Strategy sends keyframes
based on how far it believes the vehicle has moved, so it
implicitly adapts to the degree of change in the frame content.
Figure 12 shows a graphical representation of this for the
Rectangle trace.

Fundamentally, what this means is that the two strategies
really only differ when the vehicle’s speed changes during the
trip, in which case the distance between keyframes sent to the
edge by the Periodic Strategy varies as well. If the distance
traveled varies between keyframes that are sent to the edge
server, so will the potential amount of drift incurred that can
be corrected. Therefore, the Distance Strategy results in more
efficient control of which keyframes are sent to the edge by
sending keyframes based on distance rather than time.

Between the Periodic and Distance Strategies, we conclude
that the Distance Strategy is typically the best to use since it
adapts to a vehicle’s speed. On the other hand, the Periodic



Strategy may be preferred if predictable utilization of the
wireless link is desired.
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Fig. 13. ORB-SLAM resource usage for Rectangle trace

D. Resource Usage

Figure 13 shows ORB-SLAM’s CPU and memory usage
while processing both laps of the Rectangle trace. For the
first half of the trace, the CPU usage remains fairly steady as
only the Tracking and Local Mapping modules of ORB-SLAM
are fully active. At around 250 seconds and again at around
300 seconds, the CPU usage spikes because the Loop Closing
module triggers a global bundle adjustment. The Loop Closing
module is activated because ORB-SLAM has determined that
it has returned to a previous location. In terms of memory, it
can be seen in Figure 13(b) that ORB-SLAM’s usage grows
continuously as new keyframes are added to the map. This is
clearly not a sustainable level of growth.

Figure 14 compares the CPU and memory usage of Cloud-
SLAM and ORB-SLAM on the vehicle during the second
loop; CloudSLAM is shown processing the Rectangular trace
using different strategies. We see that the difference in CPU
use between CloudSLAM and ORB-SLAM is fairly small.
CloudSLAM reduces CPU use on the vehicle by about 20%,
compared to the original, by offloading the Remote Mapping
module to the edge, so the vehicle does not have to perform
loop detection or global bundle adjustments. However, with
regards to map data, CloudSLAM reduces memory usage by
68% on average as shown in Figure 14(b).
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Fig. 14. CloudSLAM vehicle resource usage for Rectangle trace

E. Impact of Network Bandwidth and Latency

The wireless link connecting the vehicle to the edge is an
essential part of the operation of CloudSLAM. We investigated
the impact of the available bandwidth and link latency between
the vehicle and the edge on CloudSLAM’s performance. In
our experiments, the vehicle and edge node are connected

by an Ethernet link that can sustain 940 Mbps as measured
by the iperf3 network measurement tool and the link has
an average RTT of 0.8 ms. On top of this we use the
Mahimabhi tool [18] to emulate different link speeds, ranging
from 12-96 Mbps. The lower rates represent average uplink
LTE bandwidth today, while the faster rates represent possible
future 5G bandwidth. We also utilize Mahimahi to emulate
different link latencies, ranging from 10 to 400 ms round-trip.
1) Variable Wireless Bandwidth: As a starting point, we
examine the performance of CloudSLAM using a simulated
mobile 4G LTE link based on real-world trace data of a
major carrier. This is representative of the variable wireless
bandwidth one can expect using 4G. The traces we obtained
are compatible with Mahimahi and were collected by Winstein
et al. while driving around the Boston area in 2013 [19]. The
throughput achieved in the trace for the uplink varies from
0-17.7 Mbps, with an average of 6.2 Mbps. For the Rectangle
trace, the Periodic Strategy achieves an RMSE of 0.944 m
at an average bandwidth of 0.732 Mbps and the Distance
Strategy achieves an RMSE of 0.923 m at 0.979 Mbps. This
indicates that our CloudSLAM design is robust to dynamic
bandwidth availability and is consistent with the results of the
more systematic bandwidth evaluation we present below.
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Fig. 15. Response time and RMSE versus available bandwidth.

2) Controlled Bandwidth Experiments: For a more system-
atic assessment, Figures 15(a) and 15(b) show CloudSLAM’s
response time and RMSE, respectively, for the Periodic Strat-
egy under different available link bandwidths. These results
are averaged over five runs. Here, response time refers to the
amount of time it takes the vehicle to receive a response from
the edge starting from when a keyframe begins transmission.
As we expect, Figure 15(a) shows that the delay decreases as
the bandwidth increases. We initially thought that the delay
for both traces would be similar, however it turns out that
the Rectangle trace experiences a higher number of map point
matches on the edge, almost double that of the Circular trace.
This causes the bundle adjustment performed during edge
processing to take significantly longer for the Rectangle trace



than for the Circular trace, leading to an increase in the
response time. For the RMSE shown in Figure 15(b), the
results are interesting. It can be seen that even with the change
in delay incurred from the bandwidth constraint, there is no
noticeable impact on the RMSE by varying the bandwidth. The
RMSE remains steady across the range of bandwidth values
we tested. We conclude that the bandwidth does not play a
significant role in the performance for the Periodic Strategy, as
the computation performed in the edge dominates the response
time.

Similarly, Figures 15(c) and 15(d) show CloudSLAM’s re-
sponse time and RMSE, respectively, for the Distance Strategy.
Figure 15(c) shows that the delay is inversely correlated with
the bandwidth as expected. In Figure 15(d), for both the
Rectangle and Circular traces, the RMSE remains steady as
we saw previously. As with the Periodic Strategy, there is no
correlation between the RMSE and bandwidth for the range of
values we tested, since the edge server computation is where
most of the time is spent.

Based on the bandwidth results, we conclude that with
wireless bandwidths above 10 Mbps, the bandwidth is not
as important as the proper selection of which keyframes to
transmit. Higher bandwidth does reduce the response time,
but even at 10 Mbps, the time needed to transmit a keyframe
is low compared to the time needed by the edge to process
them. This insight about the impact of bandwidth on system
performance provided guidance to our system design strategy
of CloudSLAM and how this framework could apply to other
applications of this class.
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3) Controlled Latency Experiments: We next examine how
the performance of CloudSLAM is impacted by the roundtrip
time (RTT) between the vehicle and the edge server. This
allows us to evaluate the impact of using a centralized cloud
as opposed to an edge cloud. The results are shown in
Figure 16. We see that as the RTT increases, the performance
of CloudSLAM degrades: the RMSE shown as the blue curve
(right y-axis) increases rapidly. The reason is that the data
transfer latency becomes the dominant portion of the response
time (left y-axis). As a result, pose corrections for the vehicle
are delayed, so they become less useful to the vehicle for
correcting drift as the keyframe that was sent is now too
far in the past. Note that the artificial delay added for this
experiment gets amplified by the mechanisms involved in
TCP’s congestion control algorithm.
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F. Adaptive Strategy

Figure 17 depicts the trade-off in error and bandwidth that
the Periodic and Distance strategies provide for our traces.
These curves are achieved by varying the respective parame-
ters of the strategies, e.g. time or distance. Our results indicate
that there is not necessarily a single parameter that works well
for all cases. Rather, it depends on the needs and constraints
of the application (i.e., what RMSE is acceptable), as well
as the environment in which the vehicle is operating (e.g.,
degree of difficulty, rectangular versus circular). To assist with
dynamically finding the best parameter value, we now evaluate
an adaptive strategy that is based on the algorithm described in
Section V-B. The algorithm adapts its distance threshold based
on the size of the pose adjustments, or corrections, returned
by the edge.
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Fig. 18. Performance of adaptive strategy on Rectangular trace for initial
distance threshold of 40m

Figure 18(a) shows the RMSE versus the correction thresh-
old for the Rectangular trace. The initial distance for control-
ling the keyframe rate was set at 40m. We observe that the
RMSE decreases when the correction threshold that is used to
trigger changes in the distance threshold decreases, showing
that the algorithm allows us to indirectly control the overall
error. One would expect that lower correction thresholds would
also reduce the magnitude of the keyframe adjustment since
it results in sending more keyframes. Figure 18(b) confirms
this: it shows the CDF of the resulting correction magnitudes.
It can be seen that, as the correction threshold decreases, the
likelihood of large corrections decreases as well. Altogether,
this demonstrates that it is possible for the strategy to adapt a
parameter based on a user-specified tolerance.

We provide this Adaptive Strategy as a proof-of-concept
indicating that it is possible to use rate-based strategies without
having to manually tune their respective parameters for differ-



ent environments, which would be impractical. We recognize
that more sophisticated adaptation mechanisms are warranted
given the wide variety of driving scenarios one can encounter.

VIII. RELATED WORK
A. Mobile and Vehicular Cloud Offloading

Cloud offloading in general is a well-studied topic and is
widely used. For example, it is widely applied to speed up
computation or reduce power consumption for various mobile
devices and more recently for vehicles. However, most of the
previous work involves offloading tasks with relatively modest
input data, so it is possible to offload the entire application
or to use RPC to offload application components [2], [1],
[20], [21], [22], [23]. Some more recent work has looked
at offloading applications that process video or other high
bandwidth inputs that cannot be sent to the cloud. Offloading
is still possible by partitioning the application, i.e., the mobile
device processes the high bandwidth sensor input, reducing the
volume of the data, while other tasks can be offloaded [3], [4],
[5]. Our CloudSLAM design builds on this idea, specifically
by executing the Tracking and Local Mapping tasks on the
vehicle and sending only a subset of keyframes to the cloud.
However, none of the earlier works on vehicular offloading that
involve large internal state consider the compromise on state
replication that we explore with Output-driven Consistency.

B. Consistency Models in Distributed Computing

Consistency has been a challenging issue in the history
of distributed computing [16], [24], [25]. In the early phase
of distributed computing systems, strong consistency criteria
were used to make a distributed system appear to be a
centralized system, providing the illusion of sequential access
[26], [27]. Providing strong consistency imposes performance
overhead and limits system availability, especially in Internet-
based computing systems. Alonso et al. [28] studied caching
strategies in information retrieval systems. The caching strate-
gies enhance system performance by allowing certain devia-
tions during system or communication failures. Yu et al. [28]
explored the semantic space between strong consistency and
optimistic consistency for replicated services and introduced
the concept of inconsistency error bound. Our work has
benefited from this existing knowledge in consistency models,
but our work differs because our focus is on optimizing the
accuracy of the output, allowing us to focus the consistency
requirements of the shared state between the edge and vehicle
using the output-driven consistency model.

C. SLAM

Camera-based Visual SLAM systems are receiving increas-
ing interest in robotics and autonomous driving. Previous
works related to offloading SLAM between a mobile device
and the edge include Edge-SLAM [9] and edgeSLAM [10]. In
Edge-SLAM [9], the edge server periodically copies a portion
of its global map to the mobile device, while in the other
edgeSLAM [10], the edge server sends differential pose and
map point updates to the mobile device for each keyframe it

processes. Unfortunately, these solutions are not ideal for the
use case CloudSLAM considers. Both of the above systems
were designed for indoor use, so the speed of mobility is
low and they have access to well-provisioned WiFi networks,
so bandwidth usage is not a primary concern. In contrast,
CloudSLAM is designed for fast-moving vehicles that use a
cellular network. This makes the offloading problem much
more challenging. Indoor walking speeds are typically 1 m/sec
[10], which is about 14 times slower than a car driving at
50 km/h, so the part of the map that is of interest to a user
changes much faster. This will cause an increase in the network
traffic needed to keep the data structures in a distributed setup
consistent. In addition, while typical 4G download speeds are
5-12 Mbps, upload speeds are more critical for CloudSLAM
and are much lower (2-5 Mbps), especially compared to WiFi.

As robots and autonomous vehicles are connected using
wireless communication technology, a new trend is growing
for simultaneous localization and mapping in a collaborative
manner, leveraging the powerful computing resources of the
cloud. Forster et al. [29] did a pilot study of joint mapping
using micro aerial vehicles. Schmuck et al. [30] proposed a
collaborative SLAM system for multiple UAVs based on ORB-
SLAM2. In their system, each UAV runs a lightweight visual
odometry system and sends keyframes and map points to a
central server, which performs computationally intensive tasks
such as map optimization and merging. Van Opdenbosch et
al. [31] proposed an efficient coding framework to compress
the visual features in a collaborative SLAM system. These
pioneer works have laid the technical basis for a cooperative
SLAM that uses cloud computing. Our objective is not to build
a new SLAM system, but we use SLAM as an example of
a stateful, latency-sensitive application that can benefit from
using the edge in a dynamic fashion. How our results apply
to cooperative SLAM is interesting future research.

IX. CONCLUSION

Many vehicular applications, especially those related to
autonomous driving, are becoming increasingly complex and
resource hungry. They currently run entirely in the vehicle
and are limited by the equipped resources. In this work
we present a new consistency model, Output-driven Consis-
tency, that enables us to efficiently support partitioning of
latency-sensitive applications that consume high-bandwidth
data streams and maintain large complex state. Output-driven
Consistency enables us to tradeoff accuracy and bandwidth, so
that we can maintain application performance while minimiz-
ing network traffic. Output-driven Consistency accomplishes
this by focusing on the consistency of application output rather
than the consistency of the application’s internal state. Using a
Simultaneous Localization and Mapping (SLAM) application
as an example, we develop CloudSLAM, a partitioned version
of ORB-SLAM that incorporates Output-driven Consistency.
Through an extensive evaluation, we demonstrate that Cloud-
SLAM is effective at maintaining accuracy while minimizing
network traffic.
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